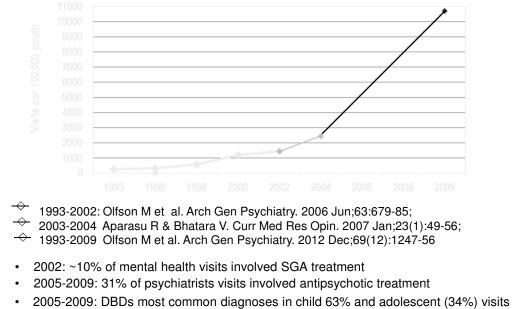
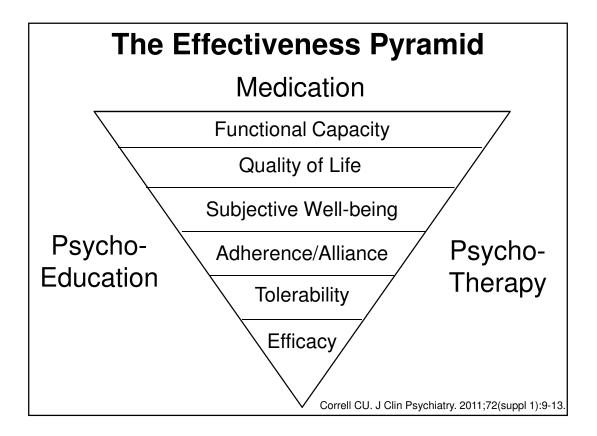
Efficacy and Tolerability of Antipsychotics in Youth with Severe Psychiatric Disorders

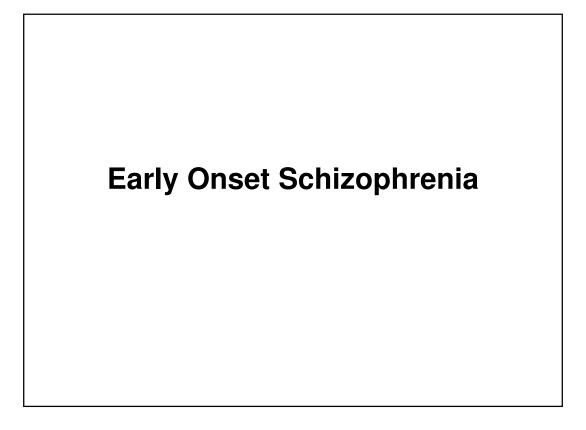
Christoph U. Correll, MD

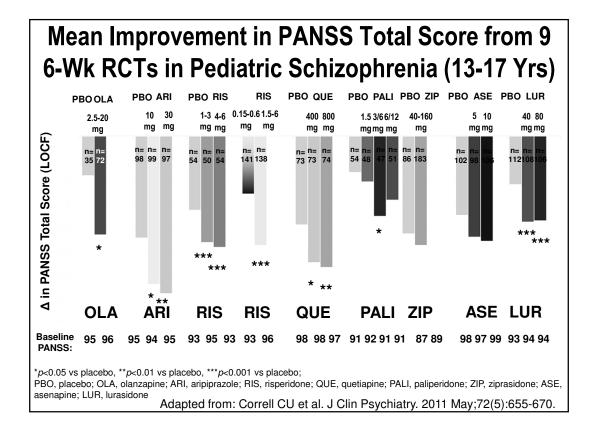

Professor of Psychiatry and Molecular Medicine Hofstra North Shore LIJ School of Medicine Medical Director Recognition and Prevention (RAP) Program The Zucker Hillside Hospital New York, USA

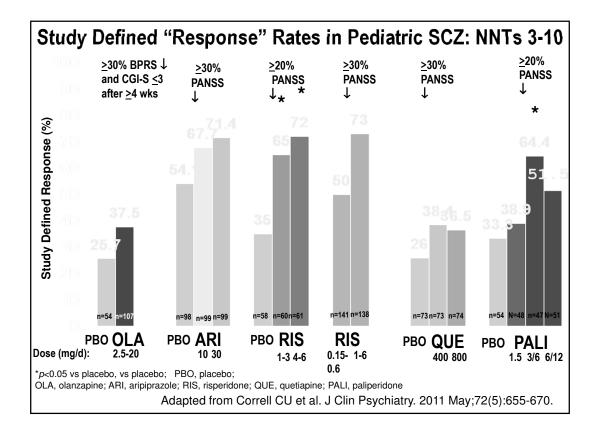

be perceived as a	in relation with one or more organizations that could a possible conflict of interest in the context of this presentation are summarized below:
Interest	Name of organization
Grants	Bendheim Foundation, Janssen, National Institute of Mental Health (NIMH), Patient-Centered Outcomes Research Institute, Takeda, Thrasher Foundation
Shares	No share holdings in pharmaceutical companies
Paid positions, honoraria and advisory boards	Alkermes, Angelini, Bristol-Myers Squibb, Forum, Gerson Lehrman Group, IntraCellular Therapies, Janssen/J&J, LB Pharma, Lundbeck, Medavante, Medscape, Neurocrine, Otsuka, Pfizer, ProPhase, ROVI, Sunovion, Supernus, Takeda, and Teva

Overview

- Early Onset Schizophrenia
- > Autistic Disorder
- Disruptive Behavior Disorders
- >Tourette's Disorder
- Adverse Effects
- Adverse Effect Management
- Conclusions

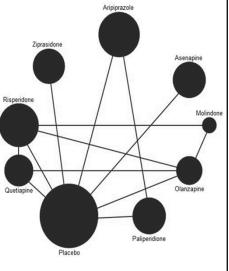

Atypical Antipsychotic Use Increasing Dramatically in Youth

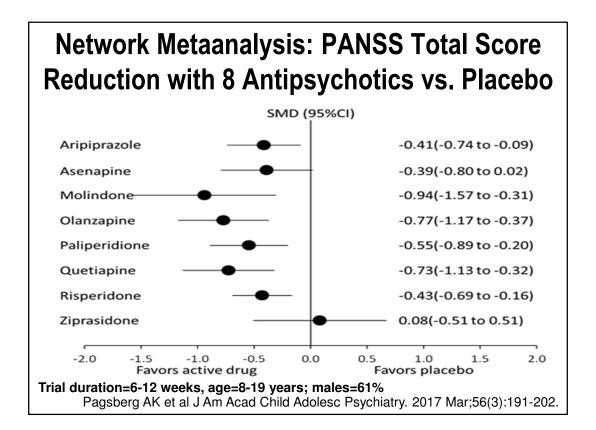


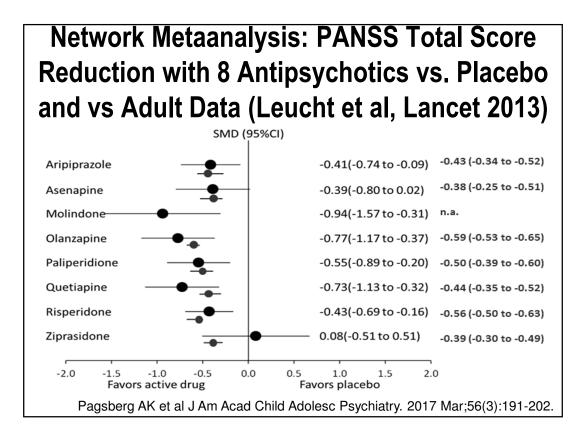


Non-Pharmacologic Management

- Psycho-education
- Stress management
- Sleep hygiene
- Diet: caffeine, alcohol, illicit drugs
- Support groups
- Psychotherapy
- School / vocational interventions (engage teacher/counselors)
- CBT for compliance (link to desired outcome, routine) and symptoms
- · Symptom and adverse effect charting





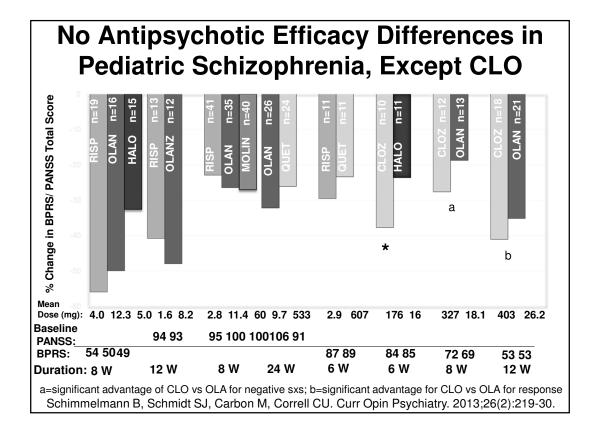

Network Metaanalysis of Non-Clozapine Antipsychotics in Early-Onset Schizophrenia (N=12, n=2157)

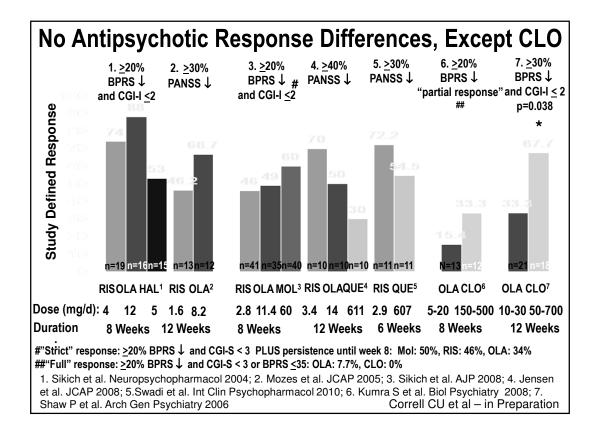
- Random-effects, arm-based network meta-analysis.
- Pairwise meta-analysis was conducted to assess consistency with network meta-analysis.
- The main outcomes were Positive and Negative Syndrome Scale total and positive symptoms; weight; plasma-triglyceride; extra-pyramidal symptoms; akathisia; and all-cause discontinuation.
- Sixteen additional outcomes were also analyzed.

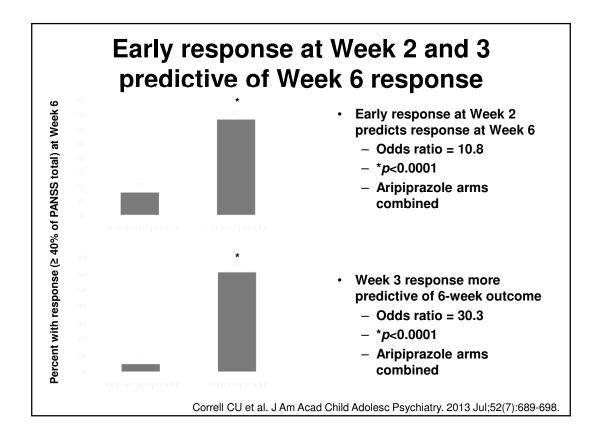
Trial duration=6-12 weeks, age=8-19 years; males=61% Pagsberg AK et al J Am Acad Child Adolesc Psychiatry. 2017 Mar;56(3):191-202.

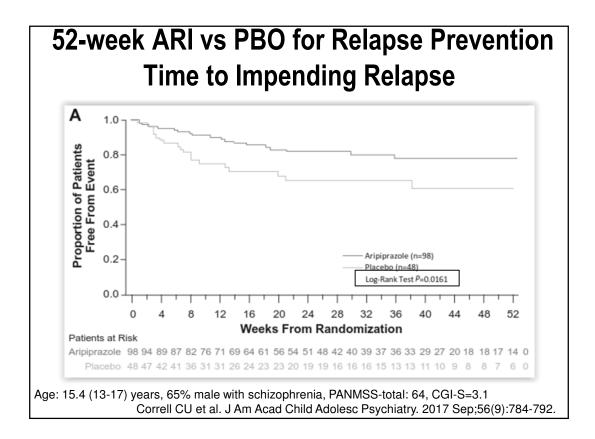
Results of the MTA in EOS

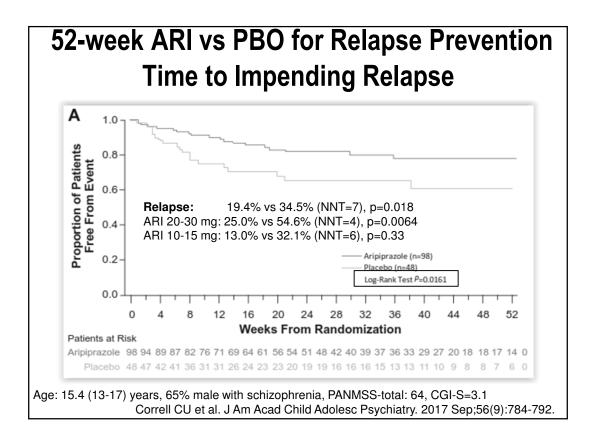
• Total and positive symptom changes were comparable among antipsychotics, except ziprasidone (inferior to molindone, olanzapine, paliperidone and risperidone).

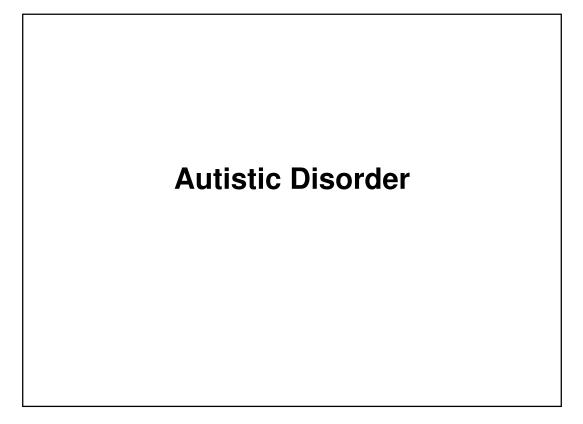

• All antipsychotics were superior to placebo regarding total symptoms, except ziprasidone and asenapine.

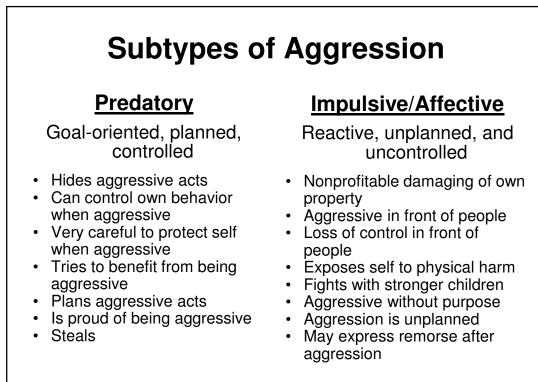

• Olanzapine was superior to aripiprazole, asenapine, paliperidone, quetiapine, risperidone and ziprasidone on Clinical Global Impression-Severity, and to quetiapine on Clinical Global Impression-Improvement.

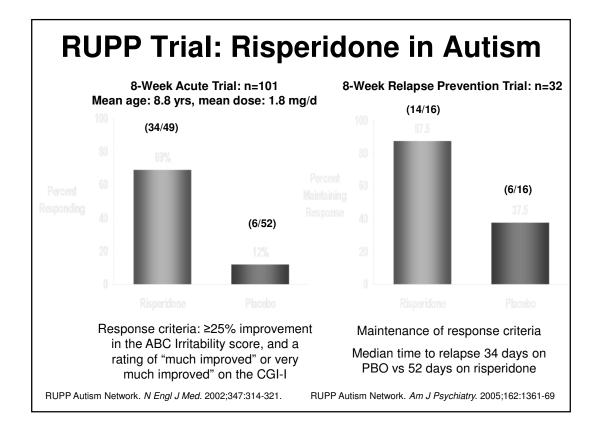

• There were no efficacy differences among antipsychotics regarding response rates, depressive symptoms, or global/social functioning.

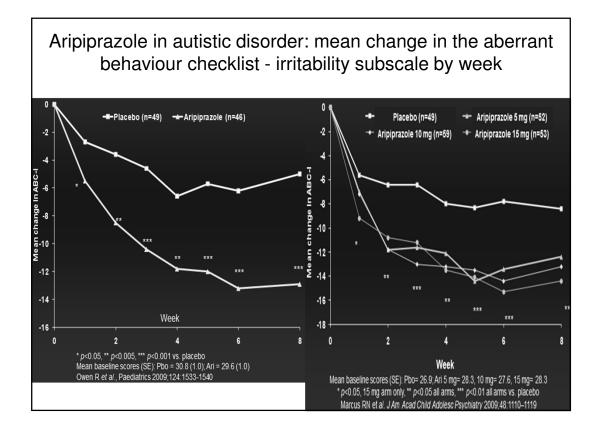

• Weight gain was primarily associated with olanzapine, extrapyramidal symptoms and akathisia with molindone, and prolactin increase with risperidone and paliperidone.

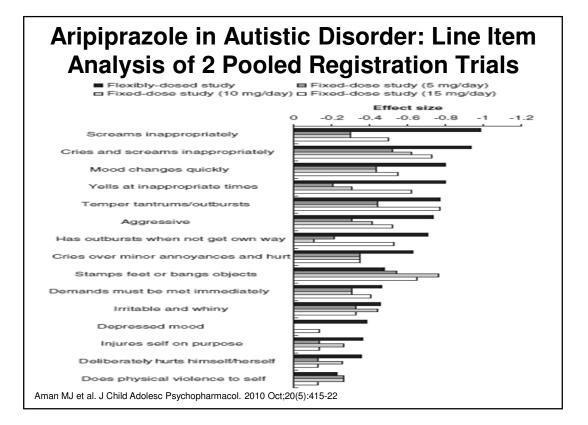

Pagsberg AK et al J Am Acad Child Adolesc Psychiatry. 2017 Mar;56(3):191-202.

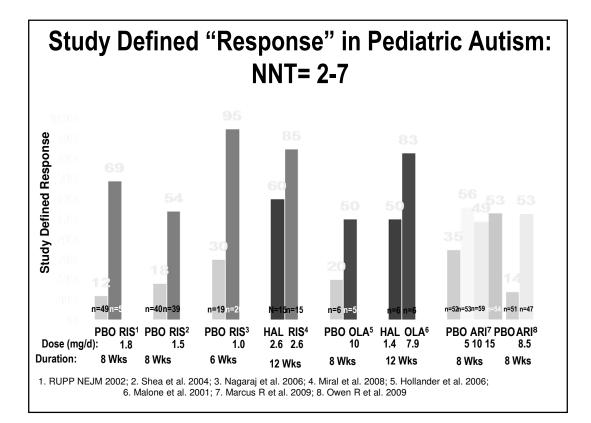


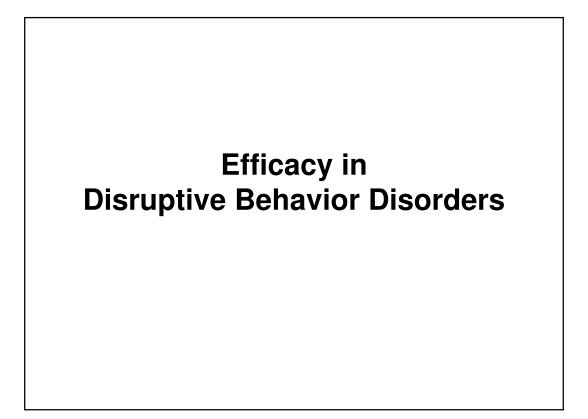


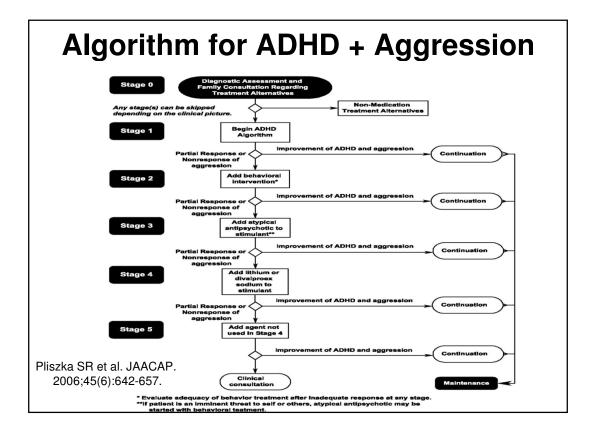


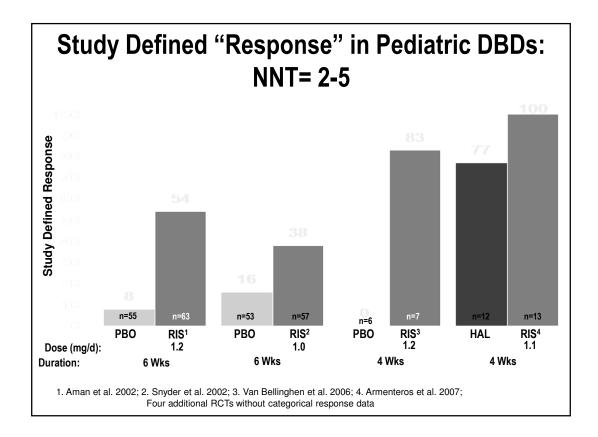


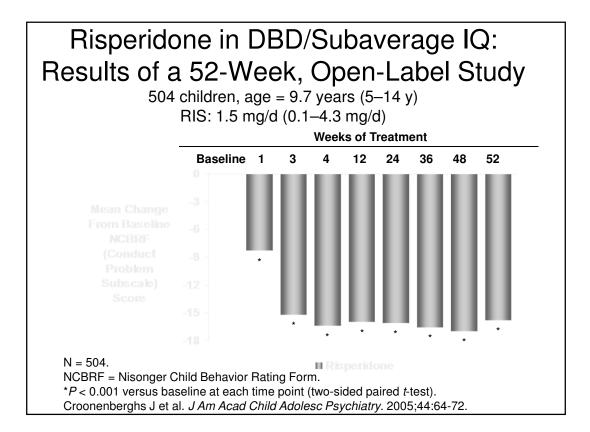


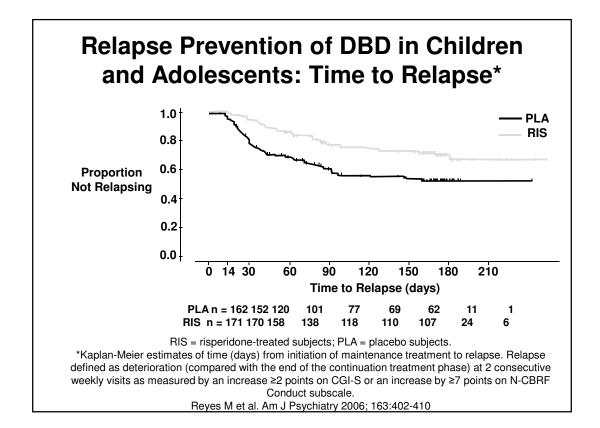

Vitiello B et al. J Neuropsychiatry. 1990;2:189-192.

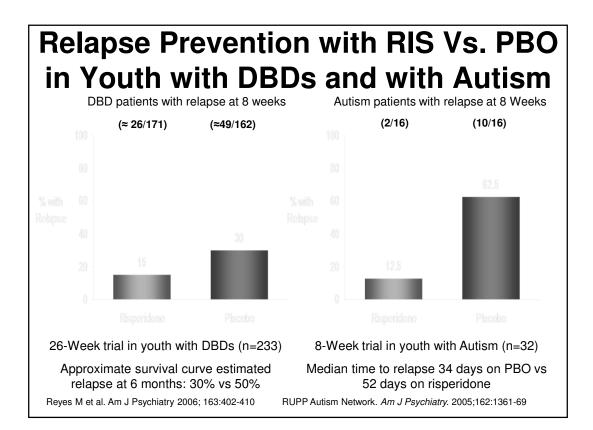

Class	Agent	Primary target symptom(s)	Level of evidence
Alpha 2 Agonist	Clonidine	Hyperactivity	Insufficient evidence
	Guanfacine	Hyperactivity	Insufficient evidence
Antipsychotics	Aripiprazole	Irritability, hyperactivity, stereotypy	Established evidence
	Haloperidol	Behavioral symptoms	Established evidence
	Risperidone	Irritability, hyperactivity	Established evidence
	Risperidone	Repetitive behavior, stereotypy	Preliminary evidence
	Olanzapine	Global functioning	Insufficient evidence
Mood Stabilizers	Divalproex sodium/ valproic acid	Irritability	Insufficient evidence (conflicting results)
	Divalproex sodium/ valproic acid	Repetitive behavior	Insufficient evidence
	Lamotrigine	Irritability, social behavior	Insufficient evidence
	Levitiracetam	Irritability	Insufficient evidence
Norepinephrine reuptake inhibitor	Atomoxetine HCI	Hyperactivity	Preliminary evidence
Serotonin reuptake	Citalopram	Repetitive behavior	Insufficient evidence
inhibitor	Fluoxetine	Repetitive behavior	Insufficient evidence
	Clomipramine	Repetitive behavior, stereotypy, irritability, hyperactivity	Insufficient evidence
Stimulants	Methylphenidate	Hyperactivity	Promising evidence
Miscellaneous	Amantadine	Hyperactivity, irritability	Insufficient evidence
	Naltrexone	Social behavior, communication, indiscriminant learning, SIB	Insufficient evidence
	Naltrexone	Hyperactivity	Preliminary evidence
	Pentoxifylline	Irritability, social withdrawal	Preliminary evidence

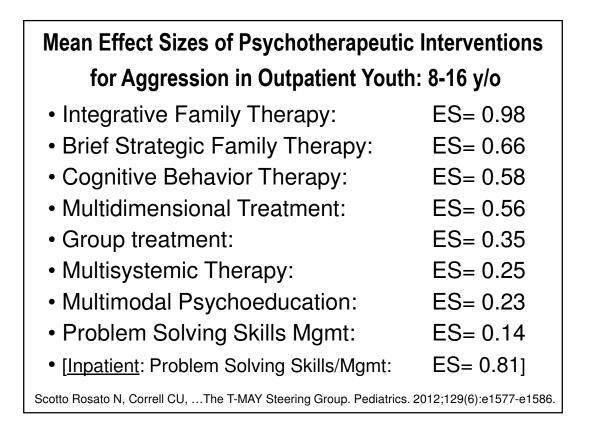


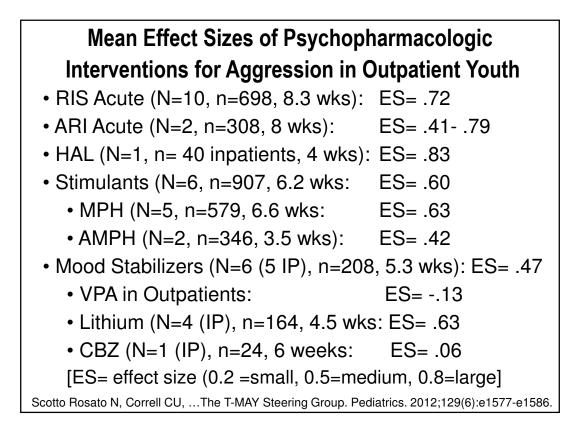


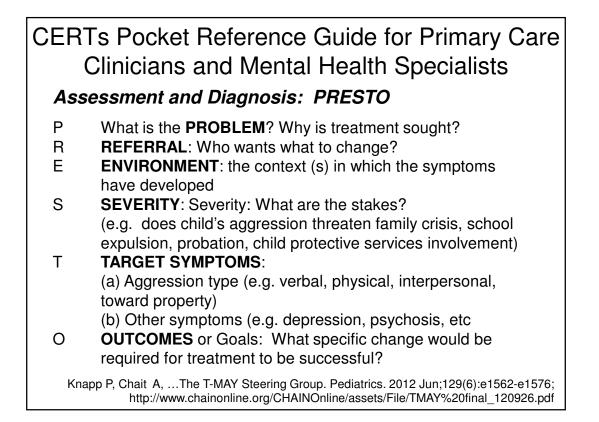


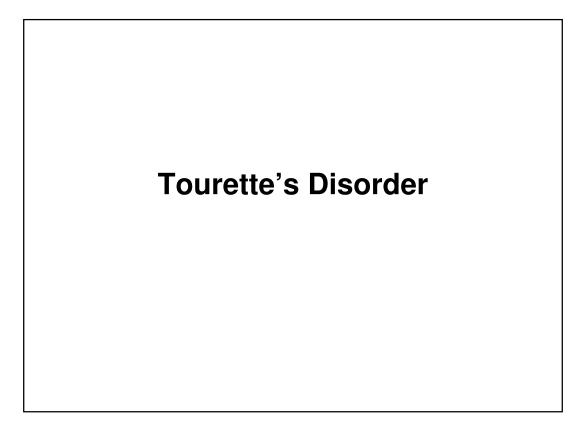


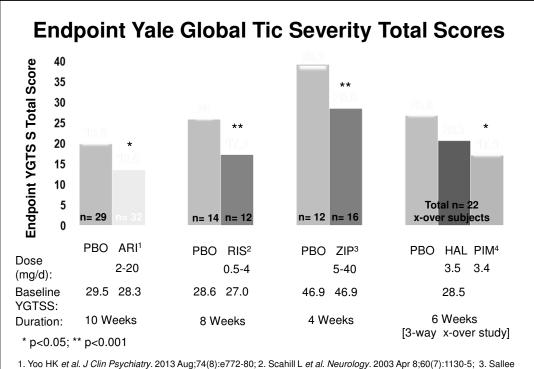




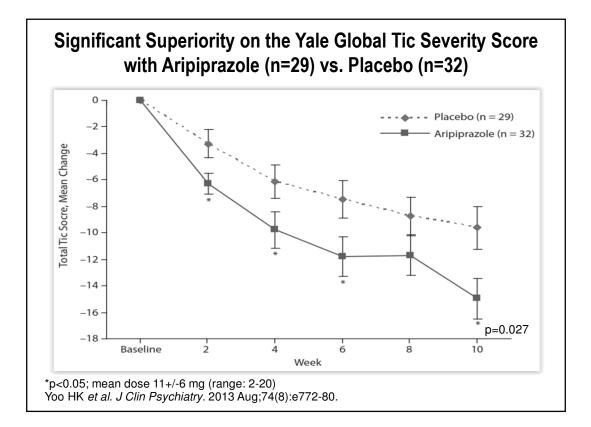


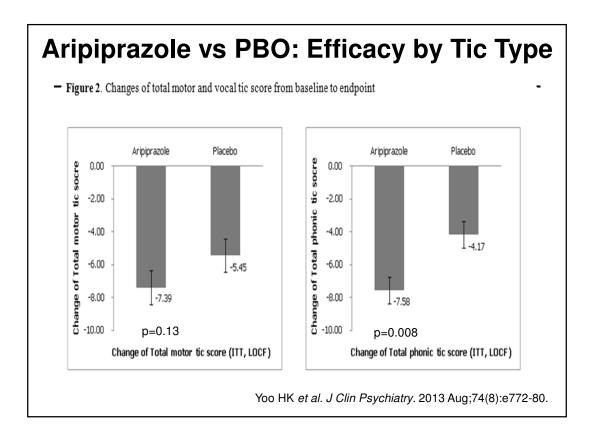






C	's Pocket Reference Guide for Primary Care Clinicians and Mental Health Specialists Cription of target symptom(s): BOLDER
В	Behavior of the child in the presence of the target symptom & the characteristic of the symptom. – e.g., is the aggression impulsive? Directed toward others?
0	Onset of the target symptom – when does it appear? what are the triggers?
L	Location/context of target symptom- where does it take place? At school? At home?
D	Duration of the target symptom – how long does the symptom last?
Е	Exacerbation of the target problem – what makes it worse?
R	Relief and resolving the target problem – what relieves t
Knap	he target problem? p P, Chait A,The T-MAY Steering Group. Pediatrics. 2012 Jun;129(6):e1562-e1576; http://www.chainonline.org/CHAINOnline/assets/File/TMAY%20final_120926.pdf




FR et al. J Am Acad Child Adolesc Psychiatry. 2003;39(3):292-9;4. Sallee FR et al. Am J Psychiatry 1997;154:1057-1062.

Aripiprazole vs PBO: Subject Characteristics

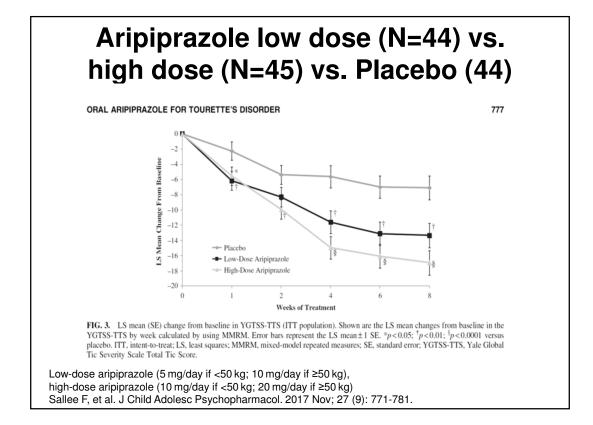
Demographics and baseline characteristics (ITT population)	Aripiprazole (n = 32)	Placebo $(n = 29)$
Male, n (%)	30 (93.75)	23 (79.31)
Age (years), mean (SD)	10.97 (2.49) (range: 6 to 18)	10.93 (3.00) (range: 6 to 17)
Type of tic disorders		
Tourette's disorder, n (%)	32 (100.00)	29 (100.00)
Comorbidities		
Attention deficit hyperactivity disorder, n (%)	5 (15.63)	1 (3.45)
Oppositional defiant disorder, n (%)	3 (9.38)	0 (0.00)
Anxiety disorder, n (%)	0 (0.00)	1 (3.45)
Body weight (kg), mean (SD)	46.15 (16.96)	41.46 (14.71)
Height (cm), mean (SD)	149.37 (15.06)	144.25 (15.24)
Body mass index (kg/m²), mean (SD)	20.20 (4.35)	19.24 (3.40)
Waist circumference (cm), mean (SD)	69.65 (11.60)	67.84 (9.69)
Medication information	Aripiprazole	Placebo
(Safety population ^{#1})	(n = 32)	(<i>n</i> = 28)
Final dose/day (mg), mean (SD) ^{#2}	10.97 (6.09) (range: 2 to 20)	16.13 (5.27) (range: 2 to 20)
Duration of study medication (days), mean (SD)	68.63 (10.02) (range: 20 to 77)	63.75 (19.09) (range:7 to 78)

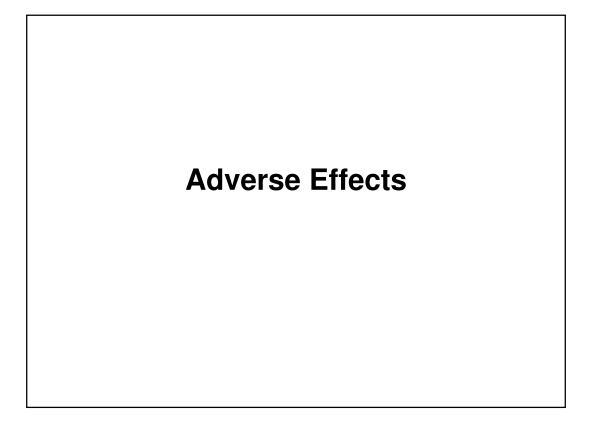
Yoo HK et al. J Clin Psychiatry. 2013 Aug;74(8):e772-80.

HUMAN PSYCHOPHARMACOLOGY Hum. Psychopharmacol Clin Exp 2016; **31**: 11–18 Published online 26 August 2015 in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/hup.2498

Aripiprazole for Tourette's syndrome: a systematic review and metaanalysis

Wei Zheng^{1,2}, Xian-Bin Li^{1,2}, Ying-Qiang Xiang^{1,2}*, Bao-Liang Zhong³, Helen F. K. Chiu³, Gabor S. Ungvari^{4,5}, Chee H. Ng⁶, Grace K. I. Lok⁷ and Yu-Tao Xiang⁸*


¹Beijing Anding Hospital, Capital Medical University, Beijing, China
 ²China National Clinical Research Center for Psychiatric Disorders, China
 ³Department of Psychiatry, Chinese University of Hong Kong, Hong Kong, SAR, China
 ⁴The University of Notre Dame Australia/Marian Centre, Perth, Australia
 ⁵School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Australia
 ⁵Venarment of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
 ⁷Kiang Wu Nursing College of Macau, Macao, SRA, China
 ⁸Unit of Psychiatry, Faculty of Health Sciences, University of Macau, Macao, SAR, China


Objective To review the efficacy and safety of aripiprazole (ARI) for Tourette's syndrome (TS).

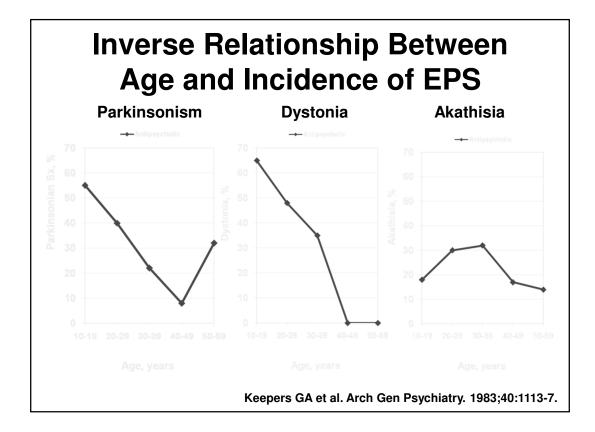
Methods This review included randomized controlled trials (RCTs) of children and adolescents (6–18 years) with TS comparing ARI monotherapy with another monotherapies in relation to clinical improvement and adverse events. **Results** Six RCTs with a total of 528 subjects (ARI treatment group: n = 253; control group: n = 275) met the inclusion criteria. These in-

Results Six RCTs with a total of 528 subjects (ARI treatment group: n = 253; control group: n = 275) met the inclusion criteria. These included two RCTs (n = 255) that compared ARI monotherapy with tiapride (TIA). Tic symptoms control assessed by Yale Global Tic Severity Scale (Standard Mean Difference (SMD) = -0.38 (Confidence Interval (CI) = -1.32 to 0.56); $I^2 = 90\%$, P = 0.42) revealed no significant differences between the two groups. Extrapyramidal symptoms were significantly different when ARI (1.5%) was compared with haloperidol (HAL) (43.5%). No significant group differences were found in the rates of nausea/vomiting, dizziness, and dry mouth between ARI and TIA (RR = 0.57 to 1.00 (95%CI = 0.14 + 4.20); $I^2 = 0\%$ to 69%, P = 0.35 to 1.00).

Conclusion This review found that ARI has similar efficacy to TIA and HAL for TS, while extrapyramidal symptoms were significantly less with ARI than with HAL. ARI can be considered as an alternative treatment option for TS. Copyright © 2015 John Wiley & Sons, Ltd.

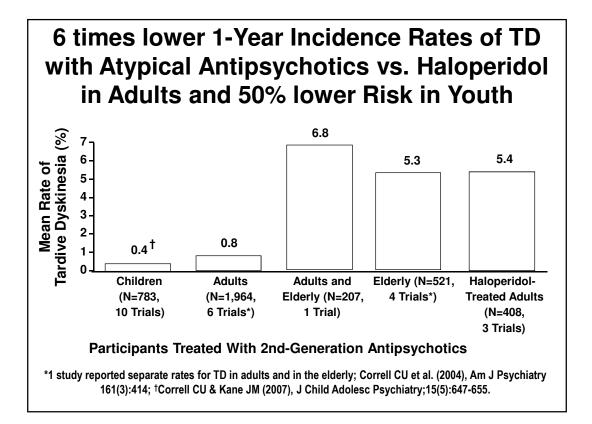
Receptor	Acute <u><</u> 1 wk	Consequence	Early <3 mo	Consequence	Late: <u>></u> 3 mo	Consequenc
α1	Hypotension*	Falls non-adherence	Hypotension *	Falls non-adherence	Hypotension	Falls non-adherend
D 2	Dystonia * Parkinsonism*	Pain non-adherence	Parkinsonism* Akathisia *	↓ cognition non-adherence	TD	Stigma ↓ socializatio ↓ quality of lit
	↑ Prolactin (*)	Sexual Dysfunction non-adherence	↑ Prolactin (*)	Sexual Dysfunction Hypogonadism	↑ Prolactin	Osteoporosi ? CHD ? breast canc
H 1	Sedation *	↓ cognition ↓ functioning non-adherence	Sedation *	non-adherence ↓ cognition ↓ functioning non-adherence	Sedation	↓ cognition ↓ functioning
	↑ Weight	↑ lipids/ glucose	↑ Weight	↑ lipids/glucose non-adherence	Diabetes dyslipidemia CHD	↓ functioning ↓ quality of li early death
M 1-4	Blurry vision* dry mouth *	Discomfort non-adherence	↓ cognition Blurry vision * dry mouth * constipation *	↓ functioning discomfort non-adherence	↓ cognition Blurry vision * dry mouth * constipation *	↓ functioning discomfort non-adherenc

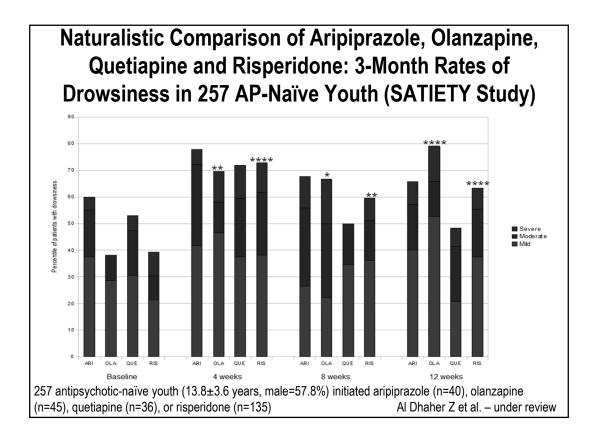
Psychotropic Adverse Events In Children and Adolescents vs. Adults

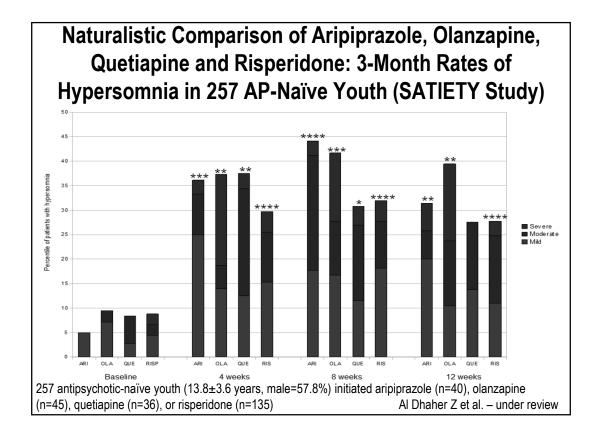

Increased risk for acute and intermediate adverse effects:

- Sedation
- · Parkinsonism (possibly not for SGAs if titrated slowly
- · Withdrawal dyskinesia
- Prolactin-related AEs (especially postpubertal females)
- · Weight gain and dyslipidemia

Decreased (delayed?) risk for:

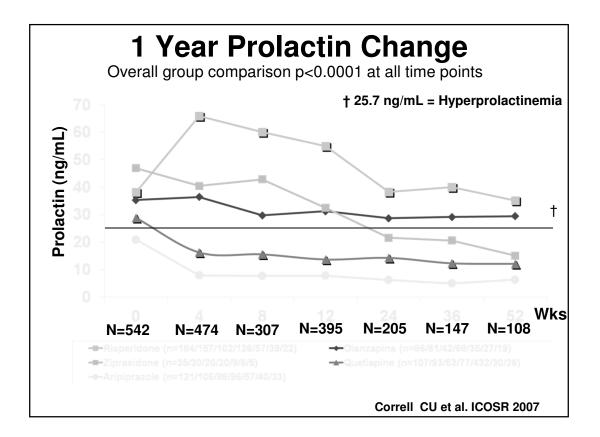

- Persistent TD
- Diabetes mellitus

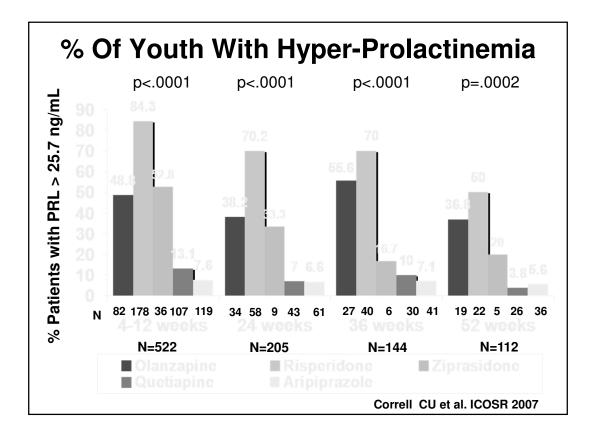

Adapted from: Correll CU et al. Child Adolesc Psychiatr Clin N Am. 2006;15(1):177-206.

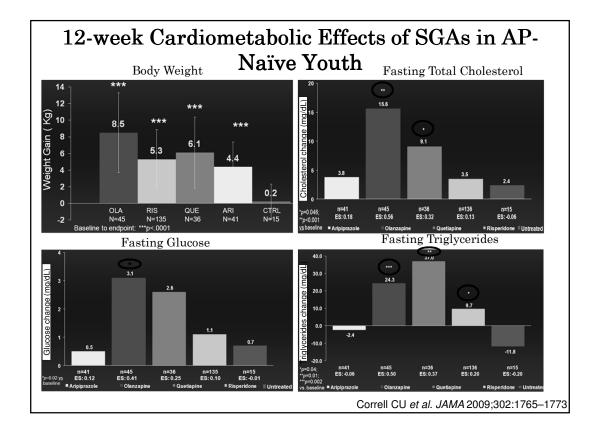


Neuromotor Side Effects in Youth Naturalistically Treated with 5 SGAs for 3 Months (n=342)

	Total	Aripiprazole	Olanzapine	Quetiapine	Risperidone	Ziprasidone	
3-mo Frequencies (LOCF)	N = 342	n = 66	n = 58	n = 66	n = 137	n = 15	
Drug-induced parkinsonism, n (%)	52 (15.20)	18 (27.27)	8 (13.79)	1 (1.52)	22 (16.06)	3 (20.00)	.002*
Anticholinergic medication, n (%)	17 (5.03)	3 (4.76)	0 (0.0)	0 (0.0)	14 (10.22)	0 (0.0)	.0004*
Highest single SAS item score, mean \pm SD	0.88 ± 1.00	1.14 ± 0.99	0.91 ± 0.85	0.55 ± 0.66	0.86 ± 1.08	1.13 ± 1.50	.01*
Significant, treatment-emergent dyskinesia, n (%)	28 (8.28)	3 (4.55)	9 (15.52)	6 (9.5)	6 (4.41)	4 (26.67)	.005*
Highest AIMS item during 3 mo, mean \pm SD	0.91 ± 0.91	1.19 ± 0.84	0.80 ± 1.04	$\textbf{0.96} \pm \textbf{0.98}$	$\textbf{0.84} \pm \textbf{0.83}$	1.0 ± 1.0	.11
Akathisia, n (%)	16 (4.83)	5 (8.06)	3 (5.36)	1 (1.59)	7 (5.15)	0 (0.0)	.45
Neuroleptic malignant syndrome, n (%)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	
Discontinuation due to extrapyramidal side effect, n (%)	11 (3.27)	4 (6.15)	1 (1.72)	0 (0.0)	6 (4.48)	0 (0)	.008*
13.6 years; male=58.2% ; AP-na		et al. J Am A	cad Child Ac	lolesc Psych	iatry. 2015 S	Sep;54(9):71	8-727.

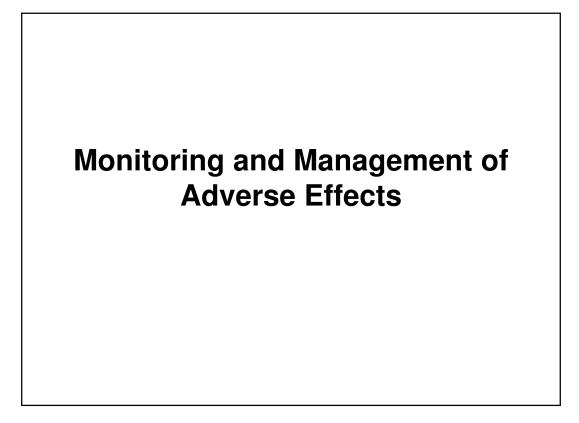





Relative Potency of Antipsychotics in Elevating Serum PRL Prolactin in Youth

- Paliperidone > Risperidone > Haloperidol
- > Olanzapine > Ziprasidone
- > Quetiapine > Clozapine > Aripiprazole
- Aripiprazole has partial D2-DA agonist activity, and may suppress PRL below baseline levels

Correll and Carlson, JAACAP 2006;45: 771-791



Healthy C	ontrols		Antipsyc	hotic-Treat	ed Youth				 Incidence per 1000 patient-years, IRR (95% CI)
No.	Patient- Years	T2DM Cases	No.	Patient- Years	T2DM Cases	OR (95% CI)	IRR (95% CI)	Subgroup Age, y	
298803	463 084	504	37999	68028	292	2.58 (1.56-4.24)	3.02 (1.71-5.35)	0-24	
268923	403615	487	35011	63 4 38	284	2.25 (1.28-3.95)	2.56 (1.34-4.92)	0-18	
								T2DM definition	
38559	43161	26	9915	3846	13	1.33 (0.37-4.79)	2.31 (0.54-9.93)	Laboratory test	results
260244	428922	478	28084	64182	279	2.92 (1.67-5.09)	3.18 (1.66-6.10)	Diagnosis and/	or treatment
								T1DM inclusion	
56460	126961	139	13364	49224	160	2.75 (1.34-5.66)	2.99 (1.36-6.55)	No	
242343	336123	365	24635	18803	132	2.40 (1.16-4.99)	3.06 (1.37-6.82)	Potentially	
								Oral antidiabetic for other indicati	
56475	126967	139	13643	49361	161	2.45 (1.22-4.91)	2.56 (1.20-5.43)	No	
242328	336117	365	24356	18667	131	2.72 (1.31-5.67)	3.67 (1.64-8.21)	Potentially	
									OR/IRR
Studie	s=8. 29	8.803	patien	ts and 4	463 08	34 patient-vea	ars: cumulativ	ve T2DM ris	k (odds ratio [OR], 2.58; 95%Cl,
	-								5.35; P < .0001)

1.8-2-fold higher Incidence of Type 2 Diabetes in Youth Exposed to Antipsychotics than in Psychiatrically III Youth

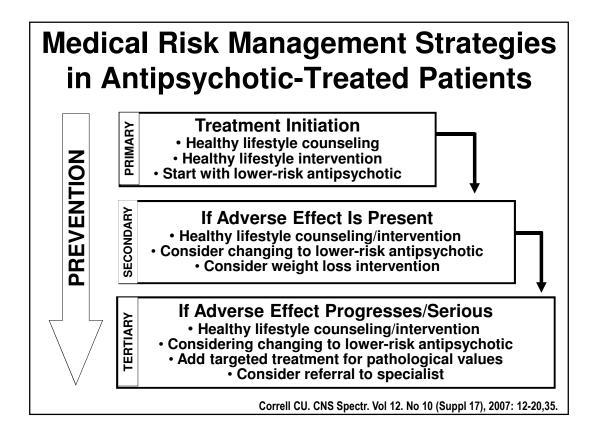
		. ,								per 1000 patient-years,
Psychiatric	Controls		Antipsyci	iotic-Treat	ed Youth			Subgroup	IRR (95% C	1)
No.	Patient- Years	T2DM Cases	No.	Patient- Years	T2DM Cases	OR (95% CI)	IRR (95% CI)	Age, y		
1342121	2071135	3235 (3198)	169840	294347	74 (753)	2.09 (1.50-2.90)	1.79 (1.31-2.44)	0-24		
1327692	2053172	3221 (3184)	140982	256325	682 (661)	2.00 (1.39-2.76)	1.64 (1.20-2.55)	0-18		
								T2DM definition		
26265	10231	19	9636	3710	12	1.72 (0.60-4.98)	1.74 (0.65-4.68)	Laboratory tes	results	*
1315856	2060904	3216 (3179)	160204	290637	762 (741)	2.14 (1.50-3.05)	1.80 (1.29-2.53)	Diagnosis and/	or treatment	
								T1DM inclusion		
71213	300574	594	13417	107143	269	1.99 (1.08-3.65)	1.77 (1.01-3.11)	No		
1270908	1770561	2641 (2604)	129589	187204	505 (484)	2.23 (1.29-3.86)	1.90 (1.06-3.40)	Potentially		
								Oral antidiabetic for other indicat		
1251601	1903757	3046	140549	245681	618	1.68 (1.08-2.59)	1.56 (1.04-2.34)	No		
90520	167378	189 (152)	29291	48666	156 (135)	2.55 (1.66-3.92)	2.15 (1.35-3.42)	Potentially	0	
Studi	ies=7, 1	,342,	121 pa	tients a	and 2,()71,135 patie	nt-years; cur	nulative T2[OM risk (O	^{OR/IRR} R, 2.09; 95%CI, 1.50-5
			2.90	; P < .0	0001) ;	and IRR (IRR	, 1.79; 95%0	CI, 1.31-2.44	l; P < .000	1).
							Colling D at		wabiata (2016 Mar 1;73(3):247-59

Psychotropic Side Effe	ct Monitoring in Youths
Assessments	Frequency
Personal and family history	Baseline and Annually
Lifestyle monitoring	Every visit
Height, weight, BMI percentile / z-score	Every visit
Somnolence/sedation	Every visit
Sexual symptoms/signs	Baseline, during titration and q 3 mo
Blood pressure, pulse	Baseline, 3-months and 6-monthly
Fasting glucose, HbA1C, lipids	Baseline, at 3 mo and (6-)12monthly
Liver function tests (if on APs)	Baseline, at 3 mo and (6-)12 monthly
EPS, akathisia	Baseline, titration, 3 mo and annually
Dyskinesia / TD	Baseline, 3 mo and annually
Electrolytes, blood count, renal f'ction	On per case basis (except if on CLO)
Prolactin	Only when symptomatic
EKG	If on ZIP: during titration, at max. dose
	If abnormal exam/Hx prior to stimulants
Adapted from: Correll CU. J	Am Acad Child Adolesc Psychiatry. 2008;47(1):9-20.

Assessment : Body Composition

- > Weight change: dependent on baseline weight and growth
- > BMI: only useful within 3 months of follow up
- BMI %ile (sex- and age adjusted standard: 50th %ile) and BMI z-score (adjusted standard: z score of 0):
- Growth charts: <u>www.cdc.gov/growthcharts/</u>
- Web-based calculators: <u>http://www.bcm.edu/cnrc/bodycomp/bmiz2.html</u>
- > BMI percentile: Definition of weight categories
- Underweight: < 5th %ile; Normal: 5-<85th %ile;
- > Overweight: 85-<95th %ile; Obese: >95th %ile
- > BMI z-score: Tracking of change over time (>3 months)
- > Age adjusted BMI: (BMI 50th BMI %ile) / 50th BMI %ile
- Waist circumference: not recommended by AMA (difficult to asses, age dependent cut-offs uncertain)

Correll CU. J Am Acad Child Adolesc Psychiatry. 2008;47(1):9-20.


Assessment : Blood Pressure and Labs

> Blood Pressure (cuff should cover >80% of the upper arm)

Hypertension: >90th percentile for sex and age (Calculate height %ile (<u>https://www.nutropin.com/patient/3 5 3 growth charts.jsp</u>) and compare blood pressure with population norms

- Hyperglycemia: <u>>100 mg/dL</u>
- Diabetes: <u>>126 mg/dL</u> (two fasting measures)
- > Insulin resistance:
 - HOMA-IR [insulin (mg/dL) x glucose (mg/dL)/405]: >4.4 (adolescent)
 TG/HDL ratio: >3.5
- > Hypertriglyceridemia: <a>> 110 mg/dL
- Hypercholesterolemia: <u>></u>170 mg/dL
- ➢ High LDL: >130 mg/dL
- ➢ Low HDL: <40 mg/dL</p>

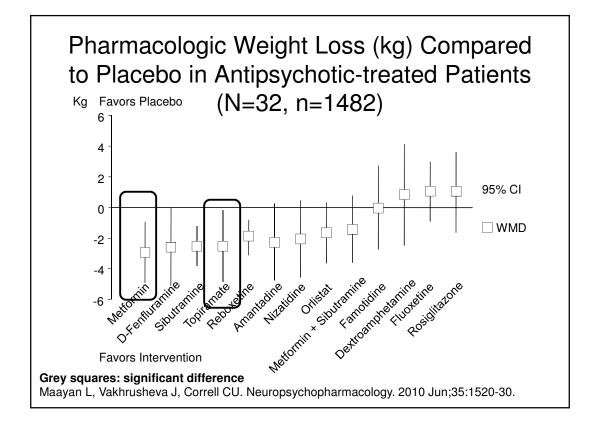
Correll CU. J Am Acad Child Adolesc Psychiatry. 2008;47(1):9-20.

Adverse Effect Management in Children and Adolescents

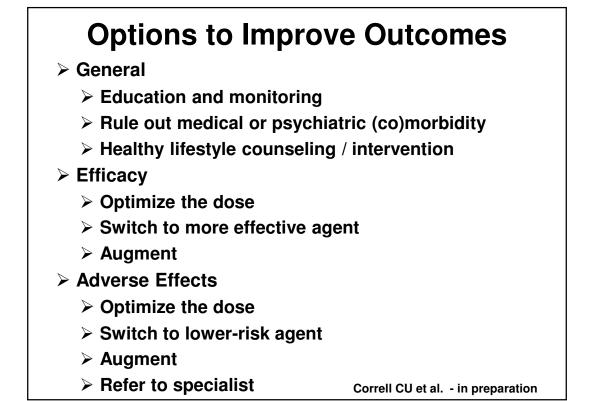
Adverse Event	Selected Interventions
Suicidality	Careful monitoring, frequent visits, safety precautions, involvement of support system
Sedation/ Somnolence	Wait if tolerance develops, \downarrow dose (\uparrow if on quetiapine <300 mg/d); switch to lower-risk drug; add modafinil
Parkinsonism	Slow titration, \downarrow dose; switch to lower-risk drug; add anticholinergic, antihistamine, benzodiazepine, etc
Akathisia	Slow titration, \downarrow dose; switch to lower-risk drug; add benzodiazepine, beta-blocker, antihistamine, anticholinergic, etc
Tardive dyskinesia	\downarrow dose; \uparrow dose (masking); replace with nonantipsychotic (if possible); switch to clozapine; add vitamin E
Adapted from: Correll CU. J Am.	Acad Child Adolesc Psychiatry. 2008;47:9-20.

Adverse Effect Management in Children and Adolescents

Adverse Event	Selected Interventions
Weight loss / growth retardation	Lower dose, drug holidays, larger evening meals, etc
Cardiac risk	Physical examination and history, EKGs in high risk patients
Weight gain, hyperglycemia, dyslipidemia, hypertension	Switch to lower-risk drug; healthy lifestyle intervention; add weight-loss agent (metformin, orlistat, amantadine, topiramate, bupropion, etc), statin/fibrate, antihyperglycemic, antihypertensive
Hyper- prolactinemia sexual/ reproductive dysfunction	If asymptomatic: may wait. If symptomatic: \downarrow dose; switch to lower-risk drug. If symptomatic despite switch to low-risk drug: MRI; add full (bromocriptine, amantadine, cabergoline) or partial dopamine agonist (aripiprazole); for performance: add bupropion, sildenafil, etc


Adapted from: Correll CU. J Am Acad Child Adolesc Psychiatry. 2008;47:9-20.

Do's	Do Not's		
Replace sugar-containing drinks	Skip breakfast		
with water	 Consume fast food >1 per wk 		
Eat 4 to <6 meals, with <2 meals in the evening or night	Consume saturated or processed fat-free food		
Serve small meal portions	Watch TV, play computer games		
 Eat slowly, drink water, take seconds only after delay 	≥2 hours/day		
Eat food with a low glycemic index (<55)			
Consume >25–30 grams of soluble fiber per day			
 Snack only when hungry and use fruit or vegetables 			
 Perform moderate physical activity for >30–60 min/day 			


Correll CU, Carlson HE. J Am Acad Child Adolesc Psychiatry. 2006;45: 771-791.

Weight Loss (kg) with Behavioral Interventions vs Control Condition in AP-treated Patients (N=17, n=810)

		erimental						Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
1.59.1 Prevention trials									
Alvarez-Jimenez 2006	4.1	3.99	28	6.98	4.5	33	9.6%	-2.88 [-5.01, -0.75]	
Cordes et al 2011	3.4	4.2	13	4.5	6.1	18	4.8%	-1.10 [-4.73, 2.53]	
Evans 2005	2	3.6	23	6	2.6	11	9.7%	-4.00 [-6.13, -1.87]	
Littrell 2003	0.81	8.97	35	7.17	9.16	35	3.8%	-6.36 [-10.61, -2.11]	
Poulin 2007	84.4	18.2	59	88.8	12.3	51	2.3%	-4.40 [-10.14, 1.34]	
Scocco 2005	0.99	3.34	10	2.96	3.08	8	6.4%	-1.97 [-4.94, 1.00]	
Subtotal (95% CI)			168			156	36.6%	-3.23 [-4.41, -2.04]	◆
Heterogeneity: Tau ² = 0.0	00; Chi ² =	4.87, df	= 5 (P =	= 0.43); I ²	= 0%				
Test for overall effect: Z =	= 5.35 (P	< 0.00001)						
1.59.2 Intervention trial	s								
Brar 2005	-2	3.79	34	-1.1	3.11	37	12.4%	-0.90 [-2.52, 0.72]	
Khazaal 2007	88	14.9	31	83.5	17.2	30	1.2%	4.50 [-3.59, 12.59]	
Kwon 2006	-3.94	3.63	29	-1.48	1.88	14	12.2%	-2.46 [-4.11, -0.81]	
Mauri 2008	-3.6	2.6	15	0.2	2.9	18	10.9%	-3.80 [-5.68, -1.92]	
McKibbin 2006	98.5213	21.228	28	99.2924	16.919	29	0.8%	-0.77 [-10.76, 9.22]	
Weber 2006	84.1848	6.54236	8	90.4667	7.35393	7	1.5%	-6.28 [-13.37, 0.81]	
Wu 2007	-4.2	4.4	28	1	3.4	25	9.8%	-5.20 [-7.31, -3.09]	
Wu 2008	63.4	2.6	32	67.2	2.6	32	14.5%	-3.80 [-5.07, -2.53]	-
Subtotal (95% CI)			205			192	63.4%	-3.04 [-4.39, -1.68]	◆
Heterogeneity: Tau ² = 1.8	32; Chi ² =	17.54, df	⁼ = 7 (P	= 0.01);	$^{2} = 60\%$				
Test for overall effect: Z =	= 4.40 (P	< 0.0001)							
Total (95% CI)			373			348	100.0%	-3.12 [-4.03, -2.21]	♦
Heterogeneity: Tau ² = 1.0	08; Chi ² =	22.46, df	= 13 (P = 0.05;	$l^2 = 42\%$				-20 -10 0 10
Test for overall effect: Z =									–20 –10 Ó 10 Favours experimental Favours control
Test for subgroup differe	nces: Chi	$^{2} = 0.04, c$	f = 1 (P = 0.84),	$I^2 = 0\%$				ravours experimental Favours control
5 1		,		.,		uito d	05 60/	with cohizonhr	nia cootrum d/o'c
•	-							•	enia-spectrum d/o's
Caemmerer J, (Correll	CU, M	laaya	an L. S	chizopl	hr Re	es. 201	2 Sep;140(1-3)):159-68.

	Antipsychotic Plus + Metformin			Antipsychotic Plus + Placebo			Weight	Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	(kg)	[95% CI] ^a	[95% CI] ^a
Prevention ^b									
Baptista 2006 et al. (12)	5.5	3.3	19	6.3	2.3	18	9.8%	-0.80 [-2.63, 1.03]	
Wang 2012 et al. (8)	61.9	6	32	66.9	5.1	34	8.2%	-5.00 [-7.69, -2.31]	
Wu 2008 et al. (10)	1.9	2.72	18	6.87	4.23	19	9.0%	-4.97 [-7.25, -2.69]	
Subtotal (95% CI)			69			71	27%	-3.49 [-6.47, -0.51]	
Heterogeneity: tau ² =5.60); χ ² =10	.57, di	=2 (p=	0.005);	I ² =819	%			
Test for overall effect: Z=	2.29 (p	=0.02)							
Intervention ^c									
Arman et al. (14)	0.81	0.33	16	2.2	2.54	16	10.7%	–1.39 [–2.65, –0.13]	
Baptista et al. (15)	-1.4	3.2	36	-0.18	2.8	36	10.5%	-1.22 [-2.61, 0.17]	
Carrizo et al. (16)	-1.87	2.9	24	0.16	2.9	30	10.2%	-2.03 [-3.59, -0.47]	
Chen et al. (9)	65.9	12.6	28	67	8.7	27	4.1%	-1.10 [-6.81, 4.61]	
Jarskog et al. (13)	-3	4.12	75	-1	3.3	71	10.8%	-2.00 [-3.21, -0.79]	
Klein et al. (17)	-0.13	2.88	18	4.01	6.23	20	7.6%	-4.14 [-7.18, -1.10]	
Wu et al. (11)	-3.2	2	32	3.1	2	32	11.1%	-6.30 [-7.28, -5.32]	
Wu et al. (7)	54.23	7.46	42	58.95	5.79	42	8.0%	-4.72 [-7.58, -1.86]	
Subtotal (95% CI)			271			274	73.0%	-2.92 [-4.66, -1.19]	•
Heterogeneity: tau ² =5.00); χ ² =62	.17, di	f=7 (p<	0.0000	1); I ² =8	39%			
Test for overall effect: Z=	3.30 (p	=0.001	0)						
Total (95% CI)			340			345	100%	-3.07 [-4.50, -1.64]	•
Heterogeneity: tau ² =4.58	3; χ ² =72	.82, d	=10 (p	<0.000	01); I ² =	=86%			-10 -5 0 5
Test for overall effect: Z=	4.20 (p	<0.000	1)						Favors Metformin Favors Cont

Severe psychiatric disorders not infrequently start before age 18 While some symptom presentations may differ across the age range, the diagnostic criteria are identical for youth and adults Treatment guidelines are identical for youth and adults, except that dosing may have to be slower and (potentially somewhat) lower, and youth are more sensitive to adverse events Atypical antipsychotics have proven efficacy in pediatric schizophrenia, bipolar disorder, irritability associated with autistic disorder, aggression and Tourette's disorder

Summary cont'd

- Like in adults, the relative efficacy of antipsychotics seems to be roughly similar, at least at group levels, except for clozapine
- Pediatric patients are at greater risk than adults for prolactin elevation, sedation, weight gain and metabolic effects
- A careful risk-to-benefit evaluation is needed when deciding to start or continue individual agents and lowest risk agents and non-pharmacologic treatment options ought to be tried first
- Future drug development will need to pay attention to effects of antipsychotics on brain development and long-term efficacy and tolerability
- Stratified and personalized treatment is needed

Christoph U. Correll, M.D.

The Zucker Hillside Hospital Psychiatry Research 75-59 263rd Street Glen Oaks, New York 11004 Tel: 718 470-4812 Fax: 718 343-1659 E-mail: ccorrell@northwell.edu